Rangelands and Soils: What we know and don’t know

Justin D. Derner
Justin.Derner@ars.usda.gov

United States Department of Agriculture
Road map

• Importance and characteristics of rangeland

• Rangeland vs. pastures

• What we know:
 – Environmental controls
 – Management
 – Management x environment

• What we don’t know:
 – Where does the thermometer go?
Importance of rangeland

- >50% of earth’s land area
- Contains 10-30% of global soil organic carbon (SOC)
 - Improper management can release this back to atmosphere
 - Carbon sequestration rates are low (0.07 to 0.30 Mg C ha/yr), but large land area available
- Ecosystem co-benefits
 - Greater soil water holding capacity
 - Improved soil structure and
 - Enhanced nutrient cycling
Characteristics of rangelands

- Inherent high degree of spatial and temporal variability
 - Soils
 - Topography
 - Plant communities
 - Seasonal distribution and total precipitation
 - Climate
- Ecosystem C storage >90% in soil organic matter (SOM)
- Slow vegetation change
Rangelands vs. Pastures

• **Rangelands**
 – Native species (mix of C3/C4)
 – Low inputs (if any)
 – Often extensive rotational grazing management

• **Pastures**
 – Improved species (often C3 grasses and legumes)
 – Inputs of water, fertilizer and chemical control
 – Intensive grazing management
 • Keep plants in vegetative state
 – Capacity for increased soil C due to prior management and inputs
What we know: environmental controls

- Spring (AMJ) precipitation drives aboveground biomass production
- Soil C sequestration characterized by short periods (2-3 months) of high C uptake and long periods of C balance or small losses
- Lag effect following drought where flush of accumulated soil N is incorporated into biomass
- Clay and loamy soils have more soil C capacity than sandy soils
- Need for increased resilience
 - Healthy soils are important
 - Intra- and inter-seasonal precipitation variability
 - Adaptive management emphasis
Summary of different rangelands

<table>
<thead>
<tr>
<th>Location</th>
<th>Vegetation</th>
<th>Mean (and range) annual net ecosystem exchange (g C/m²/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Las Cruces, NM</td>
<td>Desert grassland</td>
<td>-160 (-254 to 94)</td>
</tr>
<tr>
<td>Lucky Hills, AZ</td>
<td>Desert shrub</td>
<td>-93 (-162 to 55)</td>
</tr>
<tr>
<td>Burns, OR</td>
<td>Sagebrush steppe</td>
<td>73 (-61 to 229)</td>
</tr>
<tr>
<td>Dubois, ID</td>
<td>Sagebrush steppe</td>
<td>83 (-47 to 260)</td>
</tr>
<tr>
<td>Mandan, ND</td>
<td>Northern mixed prairie</td>
<td>53 (-27 to 119)</td>
</tr>
<tr>
<td>Nunn, CO</td>
<td>Shortgrass steppe</td>
<td>107 (4 to 227)</td>
</tr>
</tbody>
</table>

Svejcar et al. 2008
Livestock grazing: Adaptive management

Outcome-based decision making incorporating monitoring feedback

- Management-science partnerships
- Spatial and temporal movement flexibility of livestock
 - Within and across years
- Adaptation to weather variability
What we know: management controls

- Moderate grazing for livestock production
- Vegetation heterogeneity needed, however
 - Patch burning
 - Adaptive management
 - Grassbanking
- Soil bulk density increases with stocking rate
- Grazing increases soil C compared to non-grazing
- Light to moderate grazing enhances soil C
- Heavy grazing: C gains in wet years and large losses in dry years/seasons
- Improper management could release C stocks
- Adding legumes has large potential for soil health
Management to increase soil C

- **Stimulate C cycling**
 - Aboveground plant litter to soil
- **Stimulate aboveground production**
 - Alter vegetation composition
 - Adding legumes for N
- **Alter above:below ground C allocation**
 - Shift allocation more belowground
Adding a legume

\[y = 2.668 + 0.396 \text{ (years)} \]
\[P = 0.0181 \]
\[r^2 = 0.99 \]

Mortenson et al. 2004
Derner and Schuman 2007
What we know: management x environment

- Soil C dynamics related to precipitation trends
- Soil C dynamics greatest with heavy grazing
- Short-term soil respiration is a good indicator of soil biological activity and nitrogen cycling
- Little known about adaptive management and soil C for application to ranches
- Difficulty with rangeland health in Great Plains, especially grazing resistant systems
 - Protocols developed for arid systems of Intermountain West and desert Southwest (shrub-dominated systems)
What we don’t know

- Soil health research lacking for rangelands
 - Lots of efforts on croplands, but not directly applicable
- Where does the thermometer go?
 - What do we “measure” for soil health?
 - Do we focus on structural, chemical or biological components of soil health?
 - What are the key “tests” for soil health?
- With prior proper management, is there capacity for improving soil health?
- How to correct misinformation that is available
Questions?