Rangelands and Soils: What we know and don't know

Justin D. Derner Justin.Derner@ars.usda.gov

Road map

- Importance and characteristics of rangeland
- Rangeland vs. pastures
- What we know:
 - Environmental controls
 - Management
 - Management x environment
- What we don't know:
 - Where does the thermometer go?

Importance of rangeland

- >50% of earth's land area
- Contains 10-30% of global soil organic carbon (SOC)
 - Improper management can release
 this back to atmosphere
 - Carbon sequestration rates are low (0.07 to 0.30 Mg C ha/yr), but large land area available
- Ecosystem co-benefits
 - Greater soil water holding capacity
 - Improved soil structure and
 - Enhanced nutrient cycling

Characteristics of rangelands

- Inherent high degree of spatial and temporal variability
 - Soils
 - Topography
 - Plant communities
 - Seasonal distribution and total precipitation
 - Climate
- Ecosystem C storage >90% in soil organic matter (SOM)
- Slow vegetation change

Derner et al. 2008

Rangelands vs. Pastures

- Rangelands
 - Native species (mix of C3/C4)
 - Low inputs (if any)
 - Often extensive rotational grazing management
- Pastures
 - Improved species (often C3 grasses and legumes)
 - Inputs of water, fertilizer and chemical control
 - Intensive grazing management
 - Keep plants in vegetative state
 - Capacity for increased soil C due to prior management and inputs

What we know: environmental controls

- Spring (AMJ) precipitation drives aboveground biomass production
- Soil C sequestration characterized by short periods (2-3 months) of high C uptake and long periods of C balance or small losses
- Lag effect following drought where flush of accumulated soil N is incorporated into biomass
- Clay and loamy soils have more soil C capacity than sandy soils
- Need for increased resilience
 - Healthy soils are important
 - Intra- and inter-seasonal precipitation variability
 - Adaptive management emphasis

Summary of different rangelands

Location	Vegetation	Mean (and range) annual net ecosystem exchange (g C/m²/yr)
Las Cruces, NM	Desert grassland	-160 (-254 to 94)
Lucky Hills, AZ	Desert shrub	-93 (-162 to 55)
Burns, OR	Sagebrush steppe	73 (-61 to 229)
Dubois, ID	Sagebrush steppe	83 (-47 to 260)
Mandan, ND	Northern mixed prairie	53 (-27 to 119)
Nunn, CO	Shortgrass steppe	107 (4 to 227)

Livestock grazing: Adaptive management

Outcome-based decision making incorporating monitoring feedback

- Management-science partnerships
- Spatial and temporal movement flexibility of livestock
 - Within and across years
- Adaptation to weather variability

What we know: management controls

- Moderate grazing for livestock production
- Vegetation heterogeneity needed, however
 - Patch burning
 - Adaptive management
 - Grassbanking
- Soil bulk density increases with stocking rate
- Grazing increases soil C compared to non-grazing
- Light to moderate grazing enhances soil C
- Heavy grazing: C gains in wet years and large losses in dry years/seasons
- Improper management could release C stocks
- Adding legumes has large potential for soil health

Management to increase soil C

- Stimulate C cycling
 - Aboveground plant litter to soil
- Stimulate aboveground production
 - Alter vegetation composition
 - Adding legumes for N
- Alter above:below ground C allocation
 - Shift allocation more belowground

Adding a legume

Mortenson et al. 2004 Derner and Schuman 2007

What we know: management x environment

- Soil C dynamics related to precipitation trends
- Soil C dynamics greatest with heavy grazing
- Short-term soil respiration is a good indicator of soil biological activity and nitrogen cycling
- Little known about adaptive management and soil C for application to ranches
- Difficulty with rangeland health in Great Plains, especially grazing resistant systems
 - Protocols developed for arid systems of Intermountain West and desert Southwest (shrub-dominated systems)

What we don't know

- Soil health research lacking for rangelands
 - Lots of efforts on croplands, but not directly applicable
- Where does the thermometer go?
 - What do we "measure" for soil health?
 - Do we focus on structural, chemical or biological components of soil health?
 - What are the key "tests" for soil health?
- With prior proper management, is there capacity for improving soil health?
- How to correct misinformation that is available

Questions?

