USDA-Agricultural Research Service: Soil health efforts on grazinglands

Justin D. Derner Justin.Derner@ars.usda.gov

Agricultural Research Service

Road Map

- Grazingland characteristics
 - Rangeland vs. pastures
- What we know:
 - Environmental controls
 - Management
 - Genetics x Environment x Management (G x E x M)
- What we don't know:
 - Where does the thermometer go?

Importance of Grazinglands

- >50% of earth's land area
- Contains 10-30% of global soil organic carbon (SOC)
 - Improper management can release
 this back to atmosphere
 - Carbon sequestration rates are low on rangelands but large land area
- Ecosystem co-benefits
 - Greater soil water holding capacity
 - Improved soil structure
 - Enhanced nutrient cycling
 - Reduced soil erosion
 - Habitat improvements

Rangelands vs. Pastures

- Rangelands
 - Native species (mix of C3/C4)
 - Low inputs (if any)
 - Extensive rotational grazing management
 - High degree of spatiotemporal variability in soils, topography, climatic conditions/weather, plant communities, seasonal precipitation distribution
- Pastures
 - Improved species
 - Water, fertilizer and chemical inputs
 - Intensive grazing management
 - Capacity for increased soil C due to prior management and inputs

What We Know: Environmental Controls

- Soil C sequestration characterized by short periods (2-3 months) of high C uptake and long periods of C balance or small losses
- Lag effect following drought where flush of accumulated soil N is incorporated into biomass
- Clay and loamy soils have more soil
 C capacity than sandy soils

Summary of Different Grazinglands

Location	Vegetation	Mean (and range) annual net ecosystem exchange (g C/m²/yr)
Las Cruces, NM	Desert grassland	-160 (-254 to 94)
Lucky Hills, AZ	Desert shrub	-93 (-162 to 55)
Burns, OR	Sagebrush steppe	73 (-61 to 229)
Dubois, ID	Sagebrush steppe	83 (-47 to 260)
Mandan, ND	Northern mixed prairie	53 (-27 to 119)
Nunn, CO	Shortgrass steppe	107 (4 to 227)

What We Know: Management Controls

- Soil bulk density increases with stocking rate
- Grazing increases soil C compared to non-grazing
- Light to moderate grazing enhances soil C
- Heavy grazing: C gains in wet years and large losses in dry years/seasons
- Adding legumes has large potential for soil health

Management to Increase Soil C

- Stimulate C cycling
 - Aboveground plant litter to soil
- Stimulate aboveground production
 - Alter vegetation composition
 - Adding legumes for N
- Alter above:below ground C allocation
 - Shift allocation more belowground

What We Know: Genetics x Environment x Management

 Prediction of benefits of soil health difficult due to variability in soils, ecosystems, climate and management across large geographic areas

- Soil C dynamics related to precipitation trends
- Soil C dynamics greatest with heavy grazing
- Short-term soil respiration is a good indicator of soil biological activity and nitrogen cycling
- Little known about adaptive management and soil C for application to rangelands

What We Do Not Know

- Soil health research lacking for rangelands
 - Lots of efforts on croplands, but not directly applicable
- Where does the thermometer go?
 - What do we "measure" for soil health?
 - Do we focus on structural, chemical or biological components of soil health?
 - What are the key "tests" for soil health?
- With prior proper management, is there capacity for <u>improving</u> soil health?

United States Department of Agriculture Climate Hubs http://www.usda.gov/climatehubs

Questions?

